Приложение 2 к РПД Методика решения задач с параметрами в средней школе 44.03.05 Педагогическое образование (с двумя профилями подготовки) направленность (профили) Математика. Информатика Форма обучения — очная Год набора — 2023

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1. 0	ощие сведения			
1.	Кафедра	Математики, физики и информационных технологий		
2.	Направление подготовки	44.03.05 Педагогическое образование (с двумя профилями подготовки)		
3.	Направленность (профили)	Математика. Информатика		
4.	Дисциплина (модуль)	Б1.В.ДВ.01.01 Методика решения задач с параметрами в средней школе		
5.	Форма обучения	очная		
6.	Год набора	2023		

2. Перечень компетенций

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ПК-1: Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования	Формируемая	Крите	Формы контроля			
компетенции (разделы, темы дисциплины)	енции (разделы, компетенция Знать. Уметь.		Уметь:	Владеть:	сформированности компетенций	
Основные методы решения задач с параметрами	УК-2 ПК-1	– основные типы задач с параметрами; – методы решения основных типов задач с параметрами; – методику обучения	- основные типы задач с параметрами; - методы решения основных типов задач с параметрами;	решать и обосновывать задачи	 основными методами решения школьных математических задач 	Активность на практических
Линейные уравнения, неравенства и их системы	УК-2 ПК-1			с параметрами; – решать практико- ориентированные задачи по разделам курса; – решать основные	с параметрами; - математическим аппаратом,	занятиях Выполнение
Квадратные уравнения	УК-2 ПК-1				необходимым при решении задач с параметрами;	домашних заданий
Квадратные неравенства	УК-2 ПК-1				подбором задач, организацией и проведением занятий со	Выполнение индивидуального
Аналитические и геометрические приемы решения задач с параметрами	УК-2 ПК-1	учащихся решению школьных задач с параметрами	типы задач, предлагавшихся на ЕГЭ в предыдущие годы	школьниками по решению задач; – методикой обучения учащихся решению школьных задач с параметрами	задания Контрольная работа	

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» — 60 баллов и менее; «удовлетворительно» — 61-80 баллов; «хорошо» — 81-90 баллов; «отлично» — 91-100 баллов

4. Критерии и шкалы оценивания

4.1. Активность на практических занятиях

<u>. </u>				
Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за активность на занятии	0,2	0,6	0,8	1

4.2. Выполнение домашнего задания

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненное домашнее задание	0,2	0,5	0,8	1

4.3. Выполнение индивидуального задания

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненное индивидуальное задание	5	10	15	20

1.4. Выполнение контрольной работы

Процент правильно решенных заданий	До 60	61-80	81-90	91-100
Количество баллов за выполнение контрольной работы	5	10	15	20

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1. Типовое домашнее задание

Задача. Известно, что уравнение $(2p+3)x^2+(p+3)x+1=0$ имеет хотя бы один корень. Найдите все значения параметра p, при которых число различных корней этого уравнения равно числу различных корней уравнения $\frac{2x+1}{21-p}=\frac{1}{\sqrt{x-3}+3}$.

1 способ. Введем новую переменную $t = \sqrt{x-3}$, $x = t^2 + 3$, $t \ge 0$. Тогда при $p \ne 21$ второе уравнение примет вид $(2(t^2 + 3) + 1)(t + 3) = 21 - p \iff 2t^3 + 6t^2 + 7t + p = 0$.

Покажем, что функция $\varphi(t) = 2t^3 + 6t^2 + 7t + p$ возрастает при $t \ge 0$. Это следует из того, что $\varphi'(t) = 6t^2 + 12t + 7 > 0$.

Таким образом, уравнение $\varphi(t)=0$ имеет не более одного корня и условиям задачи удовлетворяют те значения p, при которых оба уравнения имеют единственное решение. Первое уравнение имеет единственный корень в следующих случаях:

1.
$$2p+3=0 \iff p=-1,5, x=-\frac{2}{3}$$
.

2.
$$D=0 \iff (p+3)^2-4(2p+3)=0 \iff p^2-2p-3=0, p=-1, p=3.$$

Проверим, имеет ли второе уравнение решение при этих значениях \mathcal{P} .

- а) p = -1,5. $\varphi(0) = -1,5 < 0$, $\varphi(1) = 15 1,5 = 13,5 > 0$. Уравнение $\varphi(x) = 0$ имеет корень на интервале (0;1).
- б) p = -1. $\varphi(0) = -1 < 0$, $\varphi(1) = 14 > 0$. Уравнение $\varphi(t) = 0$ имеет корень на интервале (0;1).
- в) p = 3. Уравнение $\varphi(t) = 0 \Leftrightarrow 2t^3 + 6t^2 + 7t + 3 = 0$ не имеет решений ($t \ge 0$).

2 способ. Второе уравнение запишем в виде f(x) = g(x), где $f(x) = \frac{2x+1}{21-p}$, $g(x) = \frac{1}{\sqrt{x-3}+3}$, $x \ge 3$.

Так как g(x) > 0, то уравнение f(x) = g(x) может иметь решения только при p < 21, поскольку 2x + 1 > 0 при $x \ge 3$. Выясним характер поведения функций f и g. f — линейная функция,

$$k = \frac{2}{21 - p} > 0$$
, поэтому f возрастает, $E(f) = \left[\frac{7}{21 - p}; +\infty \right]$.

g — убывающая функция, множество ее значений $E(g) = (0; \frac{1}{3}]$.

Это означает, что уравнение f(x) = g(x) на множестве $[3;+\infty)$ может иметь не более одного решения. Как и в первом способе решения, находим значения $p=-1,5,\ p=-1$ и p=3, при которых первое уравнение имеет единственное решение. Проверка «подозрительных» значений параметра P заключается в следующем:

если $f(3) \le g(3)$, то уравнение f(x) = g(x) имеет решение, если же f(3) > g(3), то решений нет.

a)
$$p = -1.5$$
. $f(3) = \frac{7}{21+1.5} = \frac{14}{45} < \frac{1}{3} = g(3)$.

6)
$$p = -1$$
. $f(3) = \frac{7}{21+1} = \frac{7}{22} < \frac{1}{3} = g(3)$.

B)
$$p=3$$
. $f(3)=\frac{7}{21-3}=\frac{7}{18}>\frac{1}{3}=g(3)$.

Условиям задачи удовлетворяют значения p=-1,5 и p=-1 .

Ответ: $\{-1,5;-1\}$.

5.2. Типовая контрольная работа

- 1. Найдите все значения параметра p, при каждом из которых число различных корней уравнения $\frac{(7p+3)x+35p-2}{x+5}=p^2+3$ равно числу различных корней уравнения $(p+3)x^2+2x(p+9)+27=0$.
- **2.** Найдите все ненулевые значения a, при каждом из которых наибольшее из двух чисел $b = 2 2a^{-2} 7 |a|^{-1}$ и $c = 2a^2 7 |a| 4$ не превосходит -7.
- **3.** Найдите все значения a, большие 1, при каждом из которых наименьшее из двух чисел b и c не меньше 4, если $b = \log_5^2 a \log_5(25a^4) + 1$, а $c = 9 \log_a(625a) \log_a^2 5$.
- **4.** Найдите все значения a, при каждом из которых оба числа $2\cos a + 9$ и $2\cos 2a + 4\cos a + 4\cos a + 4\cos a + 4\cos a$ являются решениями неравенства $\frac{2 \log_2 |x 5|}{(49 + 7x 2x^2)\sqrt{x + 1}} \le 0$.
- **5.** Найдите все значения a, для которых при каждом x из промежутка (-5;-2] значение выражения $x^2-4|x|$ не равно значению выражения a|x|+4.

Ключ

№ вопроса	Правильные ответы
1	{-3; 7; 9}
2	$\left[-1; \ -\frac{1}{2}\right] \cup \left[\frac{1}{2}; \ 1\right]$
3	$a \in [\sqrt{5}; 5] \cup [125; +\infty)$
4	$\pm \frac{2\pi}{3} + 2\pi n, \ n \in \mathbf{Z}$
5	$a \in (-\infty; -4) \cup [0, 2; +\infty)$

5.3. Типовое индивидуальное задание

Примерные темы индивидуальных заданий:

- 1. Методика решения тригонометрических уравнений с параметрами.
- 2. Методика решения тригонометрических неравенств с параметрами.
- 3. Методика решения показательных уравнений и неравенств с параметрами.
- 4. Методика решения логарифмических уравнений с параметрами.
- 5. Методика решения логарифмических неравенств с параметрами.
- 6. Методика решения систем уравнений и неравенств, содержащих параметры.
- 7. Методика решения уравнений и неравенств с параметрами, содержащих модуль.
- 8. Методика решения заданий ЕГЭ с параметрами (уровень С, задание 18).

5.4. Вопросы к зачету:

- 1. Типы задач с параметрами.
- 2. Параметр и поиск решений уравнений, неравенств и их систем (ветвление).
- 3. Аналитический метод решения задач с параметрами.
- 4. Геометрический метод решения задач с параметрами.
- 5. Метод решения относительно параметра.
- 6. Алгоритм решения линейных уравнений с параметром.

- 7. Решение линейных уравнений с параметром.
- 8. Решение линейных неравенств с параметром.
- 9. Параметр и количество решений системы линейных уравнений.
- 10. Решение систем линейных уравнений с параметром.
- 11. Решение систем линейных неравенств с параметром.
- 12. Свойство квадратного трехчлена. Алгоритмическое предписание решения квадратных уравнений с параметром.
- 13. Применение теоремы Виета при решении квадратных уравнений с параметром.
- 14. Расположение корней квадратичной функции относительно заданной точки.
- 15. Задачи, сводящиеся к исследованию расположения корней квадратичной функции.
- 16. Решение квадратных уравнений с параметром первого типа ("для каждого значения параметра найти все решения уравнения.")
- 17. Решение квадратных уравнений второго типа ("найти все значения параметра при каждом из которых уравнение удовлетворяет заданным условиям").
- 18. Решение квадратных неравенств с параметром первого типа.
- 19. Решение квадратных неравенств с параметром второго типа.
- 20. Решение квадратных неравенств с модулем и параметром.
- 21. Использование графических иллюстраций в задачах с параметрами.
- 22. Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств.
- 23. Использование симметрии аналитических выражений.